Skip to content

Kthena

Kthena is a Kubernetes-native LLM inference platform that transforms how organizations deploy and manage Large Language Models in production. Built with declarative model lifecycle management and intelligent request routing, it provides high performance and enterprise-grade scalability for LLM inference workloads.

This guide shows how to deploy a production-grade, multi-node vLLM service on Kubernetes.

We’ll:

  • Install the required components (Kthena + Volcano).
  • Deploy a multi-node vLLM model via Kthena’s ModelServing CR.
  • Validate the deployment.

1. Prerequisites

You need:

  • A Kubernetes cluster with GPU nodes.
  • kubectl access with cluster-admin or equivalent permissions.
  • Volcano installed for gang scheduling.
  • Kthena installed with the ModelServing CRD available.
  • A valid Hugging Face token if loading models from Hugging Face Hub.

1.1 Install Volcano

helm repo add volcano-sh https://volcano-sh.github.io/helm-charts
helm repo update
helm install volcano volcano-sh/volcano -n volcano-system --create-namespace

This provides the gang-scheduling and network topology features used by Kthena.

1.2 Install Kthena

helm install kthena oci://ghcr.io/volcano-sh/charts/kthena --version v0.1.0 --namespace kthena-system --create-namespace
  • The kthena-system namespace is created.
  • Kthena controllers and CRDs, including ModelServing, are installed and healthy.

Validate:

kubectl get crd | grep modelserving

You should see:

modelservings.workload.serving.volcano.sh   ...

2. The Multi-Node vLLM ModelServing Example

Kthena provides an example manifest to deploy a multi-node vLLM cluster running Llama. Conceptually this is equivalent to the vLLM production stack Helm deployment, but expressed with ModelServing.

A simplified version of the example (llama-multinode) looks like:

  • spec.replicas: 1 – one ServingGroup (one logical model deployment).
  • roles:
    • entryTemplate – defines leader pods that run:
      • vLLM’s multi-node cluster bootstrap script (Ray cluster).
      • vLLM OpenAI-compatible API server.
    • workerTemplate – defines worker pods that join the leader’s Ray cluster.

Key points from the example YAML:

  • Image: vllm/vllm-openai:latest (matches upstream vLLM images).
  • Command (leader):
command:
  - sh
  - -c
  - >
    bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=2;
    python3 -m vllm.entrypoints.openai.api_server
      --port 8080
      --model meta-llama/Llama-3.1-405B-Instruct
      --tensor-parallel-size 8
      --pipeline-parallel-size 2
  • Command (worker):
command:
  - sh
  - -c
  - >
    bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(ENTRY_ADDRESS)

3. Deploying Multi-Node llama vLLM via Kthena

3.1 Prepare the Manifest

Recommended: use a Secret instead of a raw env var:

kubectl create secret generic hf-token \
  -n default \
  --from-literal=HUGGING_FACE_HUB_TOKEN='<your-token>'

3.2 Apply the ModelServing

cat  <<EOF | kubectl apply -f -
apiVersion: workload.serving.volcano.sh/v1alpha1
kind: ModelServing
metadata:
  name: llama-multinode
  namespace: default
spec:
  schedulerName: volcano
  replicas: 1  # group replicas
  template:
    restartGracePeriodSeconds: 60
    gangPolicy:
      minRoleReplicas:
        405b: 1
    roles:
      - name: 405b
        replicas: 2
        entryTemplate:
          spec:
            containers:
              - name: leader
                image: vllm/vllm-openai:latest
                env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-token
                        key: HUGGING_FACE_HUB_TOKEN
                command:
                  - sh
                  - -c
                  - "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=2; 
                    python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline-parallel-size 2"
                resources:
                  limits:
                    nvidia.com/gpu: "8"
                    memory: 1124Gi
                    ephemeral-storage: 800Gi
                  requests:
                    ephemeral-storage: 800Gi
                    cpu: 125
                ports:
                  - containerPort: 8080
                readinessProbe:
                  tcpSocket:
                    port: 8080
                  initialDelaySeconds: 15
                  periodSeconds: 10
                volumeMounts:
                  - mountPath: /dev/shm
                    name: dshm
            volumes:
            - name: dshm
              emptyDir:
                medium: Memory
                sizeLimit: 15Gi
        workerReplicas: 1
        workerTemplate:
          spec:
            containers:
              - name: worker
                image: vllm/vllm-openai:latest
                command:
                  - sh
                  - -c
                  - "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(ENTRY_ADDRESS)"
                resources:
                  limits:
                    nvidia.com/gpu: "8"
                    memory: 1124Gi
                    ephemeral-storage: 800Gi
                  requests:
                    ephemeral-storage: 800Gi
                    cpu: 125
                env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-token
                        key: HUGGING_FACE_HUB_TOKEN
                volumeMounts:
                  - mountPath: /dev/shm
                    name: dshm   
            volumes:
            - name: dshm
              emptyDir:
                medium: Memory
                sizeLimit: 15Gi
EOF

Kthena will:

  • Create a ModelServing object.
  • Derive a PodGroup for Volcano gang scheduling.
  • Create the leader and worker pods for each ServingGroup and Role.

4. Verifying the Deployment

4.1 Check ModelServing Status

Use the snippet from the Kthena docs:

kubectl get modelserving -oyaml | grep status -A 10

You should see something like:

status:
  availableReplicas: 1
  conditions:
    - type: Available
      status: "True"
      reason: AllGroupsReady
      message: All Serving groups are ready
    - type: Progressing
      status: "False"
      ...
  replicas: 1
  updatedReplicas: 1

4.2 Check Pods

List pods for your deployment:

kubectl get pod -owide -l modelserving.volcano.sh/name=llama-multinode

Example output (from docs):

NAMESPACE   NAME                          READY   STATUS    RESTARTS   AGE   IP            NODE           ...
default     llama-multinode-0-405b-0-0    1/1     Running   0          15m   10.244.0.56   192.168.5.12   ...
default     llama-multinode-0-405b-0-1    1/1     Running   0          15m   10.244.0.58   192.168.5.43   ...
default     llama-multinode-0-405b-1-0    1/1     Running   0          15m   10.244.0.57   192.168.5.58   ...
default     llama-multinode-0-405b-1-1    1/1     Running   0          15m   10.244.0.53   192.168.5.36   ...

Pod name pattern:

  • llama-multinode-<group-idx>-<role-name>-<replica-idx>-<ordinal>.

The first number indicates ServingGroup. The second (405b) is the Role. The remaining indices identify the pod within the role.


6. Accessing the vLLM OpenAI-Compatible API

Expose the entry via a Service:

apiVersion: v1
kind: Service
metadata:
  name: llama-multinode-openai
  namespace: default
spec:
  selector:
    modelserving.volcano.sh/name: llama-multinode
    modelserving.volcano.sh/entry: "true"
    # optionally further narrow to leader role if you label it
  ports:
    - name: http
      port: 80
      targetPort: 8080
  type: ClusterIP

Port-forward from your local machine:

kubectl port-forward svc/llama-multinode-openai 30080:80 -n default

Then:

  • List models:
curl -s http://localhost:30080/v1/models
  • Send a completion request (mirroring vLLM production stack docs):
curl -X POST http://localhost:30080/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "meta-llama/Llama-3.1-405B-Instruct",
    "prompt": "Once upon a time,",
    "max_tokens": 10
  }'

You should see an OpenAI-style response from vLLM.


7. Clean Up

To remove the deployment and its resources:

kubectl delete modelserving llama-multinode -n default

If you’re done with the entire stack:

helm uninstall kthena -n kthena-system   # or your Kthena release name
helm uninstall volcano -n volcano-system