Kthena¶
Kthena is a Kubernetes-native LLM inference platform that transforms how organizations deploy and manage Large Language Models in production. Built with declarative model lifecycle management and intelligent request routing, it provides high performance and enterprise-grade scalability for LLM inference workloads.
This guide shows how to deploy a production-grade, multi-node vLLM service on Kubernetes.
We’ll:
- Install the required components (Kthena + Volcano).
- Deploy a multi-node vLLM model via Kthena’s
ModelServingCR. - Validate the deployment.
1. Prerequisites¶
You need:
- A Kubernetes cluster with GPU nodes.
kubectlaccess with cluster-admin or equivalent permissions.- Volcano installed for gang scheduling.
- Kthena installed with the
ModelServingCRD available. - A valid Hugging Face token if loading models from Hugging Face Hub.
1.1 Install Volcano¶
helm repo add volcano-sh https://volcano-sh.github.io/helm-charts
helm repo update
helm install volcano volcano-sh/volcano -n volcano-system --create-namespace
This provides the gang-scheduling and network topology features used by Kthena.
1.2 Install Kthena¶
helm install kthena oci://ghcr.io/volcano-sh/charts/kthena --version v0.1.0 --namespace kthena-system --create-namespace
- The
kthena-systemnamespace is created. - Kthena controllers and CRDs, including
ModelServing, are installed and healthy.
Validate:
You should see:
2. The Multi-Node vLLM ModelServing Example¶
Kthena provides an example manifest to deploy a multi-node vLLM cluster running Llama. Conceptually this is equivalent to the vLLM production stack Helm deployment, but expressed with ModelServing.
A simplified version of the example (llama-multinode) looks like:
spec.replicas: 1– oneServingGroup(one logical model deployment).roles:entryTemplate– defines leader pods that run:- vLLM’s multi-node cluster bootstrap script (Ray cluster).
- vLLM OpenAI-compatible API server.
workerTemplate– defines worker pods that join the leader’s Ray cluster.
Key points from the example YAML:
- Image:
vllm/vllm-openai:latest(matches upstream vLLM images). - Command (leader):
command:
- sh
- -c
- >
bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=2;
python3 -m vllm.entrypoints.openai.api_server
--port 8080
--model meta-llama/Llama-3.1-405B-Instruct
--tensor-parallel-size 8
--pipeline-parallel-size 2
- Command (worker):
command:
- sh
- -c
- >
bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(ENTRY_ADDRESS)
3. Deploying Multi-Node llama vLLM via Kthena¶
3.1 Prepare the Manifest¶
Recommended: use a Secret instead of a raw env var:
kubectl create secret generic hf-token \
-n default \
--from-literal=HUGGING_FACE_HUB_TOKEN='<your-token>'
3.2 Apply the ModelServing¶
cat <<EOF | kubectl apply -f -
apiVersion: workload.serving.volcano.sh/v1alpha1
kind: ModelServing
metadata:
name: llama-multinode
namespace: default
spec:
schedulerName: volcano
replicas: 1 # group replicas
template:
restartGracePeriodSeconds: 60
gangPolicy:
minRoleReplicas:
405b: 1
roles:
- name: 405b
replicas: 2
entryTemplate:
spec:
containers:
- name: leader
image: vllm/vllm-openai:latest
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token
key: HUGGING_FACE_HUB_TOKEN
command:
- sh
- -c
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=2;
python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline-parallel-size 2"
resources:
limits:
nvidia.com/gpu: "8"
memory: 1124Gi
ephemeral-storage: 800Gi
requests:
ephemeral-storage: 800Gi
cpu: 125
ports:
- containerPort: 8080
readinessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 15
periodSeconds: 10
volumeMounts:
- mountPath: /dev/shm
name: dshm
volumes:
- name: dshm
emptyDir:
medium: Memory
sizeLimit: 15Gi
workerReplicas: 1
workerTemplate:
spec:
containers:
- name: worker
image: vllm/vllm-openai:latest
command:
- sh
- -c
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(ENTRY_ADDRESS)"
resources:
limits:
nvidia.com/gpu: "8"
memory: 1124Gi
ephemeral-storage: 800Gi
requests:
ephemeral-storage: 800Gi
cpu: 125
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token
key: HUGGING_FACE_HUB_TOKEN
volumeMounts:
- mountPath: /dev/shm
name: dshm
volumes:
- name: dshm
emptyDir:
medium: Memory
sizeLimit: 15Gi
EOF
Kthena will:
- Create a
ModelServingobject. - Derive a
PodGroupfor Volcano gang scheduling. - Create the leader and worker pods for each
ServingGroupandRole.
4. Verifying the Deployment¶
4.1 Check ModelServing Status¶
Use the snippet from the Kthena docs:
You should see something like:
status:
availableReplicas: 1
conditions:
- type: Available
status: "True"
reason: AllGroupsReady
message: All Serving groups are ready
- type: Progressing
status: "False"
...
replicas: 1
updatedReplicas: 1
4.2 Check Pods¶
List pods for your deployment:
Example output (from docs):
NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE ...
default llama-multinode-0-405b-0-0 1/1 Running 0 15m 10.244.0.56 192.168.5.12 ...
default llama-multinode-0-405b-0-1 1/1 Running 0 15m 10.244.0.58 192.168.5.43 ...
default llama-multinode-0-405b-1-0 1/1 Running 0 15m 10.244.0.57 192.168.5.58 ...
default llama-multinode-0-405b-1-1 1/1 Running 0 15m 10.244.0.53 192.168.5.36 ...
Pod name pattern:
llama-multinode-<group-idx>-<role-name>-<replica-idx>-<ordinal>.
The first number indicates ServingGroup. The second (405b) is the Role. The remaining indices identify the pod within the role.
6. Accessing the vLLM OpenAI-Compatible API¶
Expose the entry via a Service:
apiVersion: v1
kind: Service
metadata:
name: llama-multinode-openai
namespace: default
spec:
selector:
modelserving.volcano.sh/name: llama-multinode
modelserving.volcano.sh/entry: "true"
# optionally further narrow to leader role if you label it
ports:
- name: http
port: 80
targetPort: 8080
type: ClusterIP
Port-forward from your local machine:
Then:
- List models:
- Send a completion request (mirroring vLLM production stack docs):
curl -X POST http://localhost:30080/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Llama-3.1-405B-Instruct",
"prompt": "Once upon a time,",
"max_tokens": 10
}'
You should see an OpenAI-style response from vLLM.
7. Clean Up¶
To remove the deployment and its resources:
If you’re done with the entire stack: