vllm.distributed.eplb.policy.default ¶
Expert parallelism load balancer (EPLB) for vLLM.
This module implements the core rearrangement algorithm.
The rearrangement algorithm is adapted from DeepSeek EPLB.
Please find at #12 an example on how the EPLB algorithm works.
DefaultEplbPolicy ¶
Bases: AbstractEplbPolicy
Source code in vllm/distributed/eplb/policy/default.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | |
balanced_packing classmethod ¶
Pack n weighted objects to m packs, such that each bin contains exactly n/m objects and the weights of all packs are as balanced as possible.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
weight | Tensor | [X, n], the weight of each item | required |
num_packs | int | number of packs | required |
Returns:
| Name | Type | Description |
|---|---|---|
pack_index | Tensor | [X, n], the pack index of each item |
rank_in_pack | Tensor | [X, n], the rank of the item in the pack |
Source code in vllm/distributed/eplb/policy/default.py
rebalance_experts classmethod ¶
rebalance_experts(
weight: Tensor,
num_replicas: int,
num_groups: int,
num_nodes: int,
num_ranks: int,
) -> tuple[Tensor, Tensor, Tensor]
Entry point for expert-parallelism load balancer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
weight | Tensor | [layers, num_logical_experts], the load statistics for all logical experts | required |
num_replicas | int | number of physical experts, must be a multiple of | required |
num_groups | int | number of expert groups | required |
num_nodes | int | number of server nodes, where the intra-node network (e.g, NVLink) is faster | required |
num_ranks | int | number of ranks, must be a multiple of | required |
Returns:
| Name | Type | Description |
|---|---|---|
phy2log | Tensor | [layers, num_replicas], the expert index of each replica |
log2phy | Tensor | [layers, num_logical_experts, X], the replica indices for each expert |
logcnt | Tensor | [layers, num_logical_experts], number of physical replicas for each logical expert |
Source code in vllm/distributed/eplb/policy/default.py
rebalance_experts_hierarchical classmethod ¶
rebalance_experts_hierarchical(
weight: Tensor,
num_physical_experts: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> tuple[Tensor, Tensor, Tensor]
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
weight | Tensor | [num_moe_layers, num_logical_experts] | required |
num_physical_experts | int | number of physical experts after replication | required |
num_groups | int | number of expert groups | required |
num_nodes | int | number of server nodes, where the intra-node network (e.g, NVLink) is faster | required |
num_gpus | int | number of GPUs, must be a multiple of | required |
Returns:
| Name | Type | Description |
|---|---|---|
phy2log | Tensor | [layers, num_replicas], the expert index of each replica |
log2phy | Tensor | [layers, num_logical_experts, X], the replica indices for each expert |
logcnt | Tensor | [layers, num_logical_experts], number of physical replicas for each logical expert |
Source code in vllm/distributed/eplb/policy/default.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | |
replicate_experts classmethod ¶
Replicate num_log experts to num_phy replicas, such that the maximum load of all replicas is minimized.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
weight | Tensor | [X, num_log] | required |
num_phy | int | total number of experts after replication | required |
Returns:
| Name | Type | Description |
|---|---|---|
phy2log | Tensor | [X, num_phy], logical expert id of each physical expert |
rank | Tensor | [X, num_phy], the replica rank |
logcnt | Tensor | [X, num_log], number of replicas for each logical expert |